Ed vessels. Am J Physiol Heart Circ Physiol 2009, 297:H1829836. 35. Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG: Regulation of endothelial cell nitric oxide mAChR1 Agonist Formulation synthase mRNA expression by shear stress. Am J Physiol 1995, 269:C1371378. 36. Sessa WC: eNOS at a glance. J Cell Sci 2004, 117:2427429. 37. Boo YC, Jo H: Flow-dependent regulation of endothelial nitric oxide synthase: part of protein kinases. Am J Physiol Cell Physiol 2003, 285:C49908.Hsieh et al. Journal of Biomedical Science 2014, 21:three http://jbiomedsci/content/21/1/Page 14 of38. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM: Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999, 399:60105. 39. Boo YC, Hwang J, Sykes M, Michell BJ, Kemp BE, Lum H, Jo H: Shear pressure stimulates phosphorylation of eNOS at Ser(635) by a protein kinase Adependent mechanism. Am J Physiol Heart Circ Physiol 2002, 283:H1819828. 40. Roy D, Belsham DD: Melatonin receptor activation regulates GnRH gene expression and secretion in GT1-7 GnRH neurons. Signal transduction mechanisms. J Biol Chem 2002, 277:25158. 41. Li Y, Ouyang J, Zheng H, Yu Z, Wang B: [The part of caveolae in shear stress-induced endothelial nitric-oxide synthase activation]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2005, 22:1020023. 42. Kumar S, Sud N, Fonseca FV, Hou Y, Black SM: Shear pressure stimulates nitric oxide signaling in pulmonary arterial endothelial cells by means of a reduction in catalase activity: role of protein kinase C delta. Am J Physiol Lung Cell Mol Physiol 2010, 298:H2 Receptor Modulator Biological Activity L10516. 43. Chen Z, Peng IC, Sun W, Su MI, Hsu PH, Fu Y, Zhu Y, DeFea K, Pan S, Tsai MD, Shyy JY: AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase Ser633. Circ Res 2009, 104:49605. 44. Zhang YJ, Lee TS, Kolb EM, Sun K, Lu X, Sladek FM, Kassab GS, Garland T, Shyy JYJ: AMP-activated protein kinase is involved in endothelial NO synthase activation in response to shear tension. Arterioscl Throm Vas 2006, 26:1281287. 45. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K: SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 2007, 104:148554860. 46. Chen Z, Peng IC, Cui X, Li YS, Chien S, Shyy JY: Shear anxiety, SIRT1, and vascular homeostasis. Proc Natl Acad Sci U S A 2010, 107:102680273. 47. SenBanerjee S, Lin ZY, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen ZP, Simon DI, Luscinskas FW, et al: KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 2004, 199:1305315. 48. Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, Horrevoets AJG: Prolonged fluid shear tension induces a distinct set of endothelial cell genes, most specifically lung Kr pel-like element (KLF2). Blood 2002, one hundred:1689698. 49. Wang WY, Ha CH, Jhun BS, Wong C, Jain MK, Jin ZG: Fluid shear pressure stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood 2010, 115:2971979. 50. Hsieh CY, Hsiao HY, Wu WY, Liu CA, Tsai YC, Chao YJ, Wang DL, Hsieh HJ: Regulation of shear-induced nuclear translocation on the Nrf2 transcription factor in endothelial cells. J Biomed Sci 2009, 16. 51. Takabe W, Warabi E, Noguchi N: Anti-Atherogenic Effect of Laminar Shear Tension by means of Nrf2 Activation. Antioxid Redox Sign 2011, 15.